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Abstract

Proarrow equipments are one of the frameworks for formal category theory. The

purpose of formal category theory is to abstract and synthesize the theory of ordinary

categories. With the structure of a proarrow equipment, we can interpret many con-

cepts in category theory — such as (co)limits, Cauchy completeness, and pointwise Kan

extensions — in a 2-categorical way. In these notes, we review the theory of proarrow

equipments as presented in [Woo82] and others.
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1 Basics of proarrow equipments

1.1 Basic bicategory theory

In this subsection, we collect some basic facts and fix some notation on bicategories.

A bicategory is a notion of weak 2-category. Namely, a bicategory is like a 2-category

such that the associativity and unity axioms hold only up to coherent isomorphism. Basic

references of 2-categories and bicategories are [Bén67] and [JY21]. In the following, we will

omit the coherent isomorphisms for simplicity.

Let K be a bicategory. Objects of Hom categories K(A,B) are called 1-morphisms or

simply morphisms of K, and morphisms of Hom categories are called 2-morphisms or 2-cells.

We let Kop denote the bicategory obtained by reversing morphisms of K and Kco denote the

bicategory obtained by reversing 2-cells of K. Put Kcoop = (Kop)co = (Kco)op, which is

obtained by reversing both 1-morphisms and 2-morphisms of K.
As in a 2-category, we can define equivalences and adjunctions in a bicategory as well.

∗https://yuki-imamura.gitlab.io/notes.html.

1

https://yuki-imamura.gitlab.io/notes.html


Definition 1.1. Let K be a bicategory.

(1) An equivalence in K is a pair of morphisms f : A → B and u : B → A such that

u ◦ f ∼= idA and u ◦ f ∼= idB.

(2) An adjunction in K consists of a pair of morphisms f : A→ B and u : B → A together

with 2-cells η : idA ⇒ u ◦ f and ε : f ◦ u ⇒ idB that satisfy the following triangle

identities:

B B

A A

idB

u

idA

f

fη
ε = idf ,

B B

A A

idB

u
u

idA

f
η

ε = idu .

In this case, we call f the left adjoint, u the right adjoint, η the unit, and ε the counit.

Example 1.2. (1) In the 2-category Cat of categories, an equivalence is just an equiv-

alence of categories, and an adjunction is just a pair of adjoint functors.

(2) Consider the 2-category V-Cat of enriched categories over a cosmos V1. An adjunc-

tion in V-Cat is equivalently a pair of V-functors F : A → B and G : B → A together

with a natural isomorphism B(FA,B) ∼= A(A,GB).

Now we introduce the notion of Kan extensions and Kan liftings.

Definition 1.3. Let K be a bicategory.

(1) Let f : A → B and k : A → D be morphisms of K. A left Kan extension of f along

k is a morphism Lank f : D → B together with a 2-cell θ : f ⇒ Lank f ◦ k such that

the map

K(D,B)(Lank f, h)→ K(A,B)(f, h ◦ k), χ 7→ (χk) ◦ θ

is bijective for all morphisms h : D → B. A left Kan extension in Kco, Kop, and

Kcoop are called a right Kan extension, a left Kan lifting, and a right Kan lifting, and

denoted by Ran, Lift, and Rift, respectively.

(2) Let g : B → C be another morphism of K. Then we say that g commutes with the left

Kan extension Lank f (resp. the right Kan extension Rank f) if g◦Lank f ∼= Lank(g◦f)
(resp. g ◦ Rank f ∼= Rank(g ◦ f)).

(3) Also we say that g commutes with the left Kan liftings Liftk f (resp. the right Kan

liftings Riftk f) if (Liftk f) ◦ g ∼= Liftk(f ◦ g) (resp. (Riftk f) ◦ g ∼= Riftk(f ◦ g)).

(4) A left Kan extension is called absolute if it is commuted with by all morphisms. We

define absolute right Kan extensions and absolute Kan liftings in a similar way.

1A (Bénabou) cosmos means a complete and cocomplete symmetric monoidal closed category.
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Proposition 1.4. Consider morphisms f : A → B, k : A → D, and l : D → E in a

bicategory K. If the left Kan extension Lank f exists, then we have an isomorphism

Lanl Lank f ∼= Lanlk f,

either side existing if the other does.

Proposition 1.5. Consider morphisms f : A→ B, g : B → A in a bicategory K.

(1) For a 2-cell η : idA ⇒ g ◦ f , the following are equivalent:

(i) η is the unit of the adjunction f ⊣ g.

(ii) The pair (f, η) is the absolute left Kan lifting Liftg idA.

(iii) The pair (f, η) is the left Kan lifting Liftg idA, and g commutes with it.

(iv) The pair (g, η) is the absolute left Kan extension Lanf idA.

(v) The pair (g, η) is the left Kan extension Lanf idA, and f commutes with it.

(2) For a 2-cell ε : f ◦ g ⇒ idB, the following are equivalent:

(i) ε is the counit of the adjunction f ⊣ g.

(ii) The pair (g, ε) is the absolute right Kan lifting Riftf idB.

(iii) The pair (g, ε) is the right Kan lifting Riftf idB, and f commutes with it.

(iv) The pair (f, ε) is the absolute right Kan extension Rang idB.

(v) The pair (f, ε) is the right Kan extension Rang idB, and g commutes with it.

Proposition 1.6. Let K be a bicategory.

(1) A right Kan lifting along a left adjoint is a post-composite with the right adjoint:

that is, for morphisms h : A → C and f : B → C where f has a right adjoint g, we

have

Riftf h ∼= g ◦ h.

In particular, such a right Kan lifting is absolute.

(2) A right Kan extension along a right adjoint is a pre-composite with the left adjoint:

that is, for morphisms f : A → B and h : A → C where f has a left adjoint g, we

have

Ranf h ∼= h ◦ g.

In particular, such a right Kan extension is absolute.

Proof. This follows from Proposition 1.5.

Proposition 1.7. Left adjoints commute with all right Kan liftings. Dually, right adjoints

commute with all right Kan extensions.

Proof. Easy exercises on diagram chasing.
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Definition 1.8. A bicategoryM is said to be closed if both the pre-composition functor

and the post-composition functor have right adjoints. In other words, for morphisms

X : A → B, Y : B → C, and Z : A → C in M, there exist morphisms Y‡Z and X‡Z

together with natural bijections

M(A,C)(Y ◦X,Z) ∼=M(A,B)(X,Y‡Z),

M(A,C)(Y ◦X,Z) ∼=M(B,C)(Y,X‡Z).

Proposition 1.9. Let X : A → B, Y : B → C, Z : A → C be morphisms in a bicategory

M where Y ◦ − and − ◦ X have right adjoints Y‡(−) and X‡(−) respectively. Then the

counits of these adjunctions

B

A C,

Y

Y‡Z

Z

B

A C

X‡Z
X

Z

are respectively a right Kan lifting and a right Kan extension in M. Furthermore, M
being closed is equivalent to the existence of all right Kan liftings and right Kan extensions

inM.

Proof. This follows from the definitions.

Example 1.10 (The closed bicategory of profunctors). For small categories A and B, a
profunctor X : A −7−→ B is simply an ordinary functor X : Bop ×A → Set. For profunctors

X : A −7−→ B and Y : B −7−→ C, their “composition” Y ⊙X is given by the coend

(Y ⊙X)(c, a) =

∫ b∈B
Y (c, b)×X(b, a).

This composition makes profunctors into a bicategory Prof. The Hom set functor

HomA(−,−) : Aop ×A → Set regarded as a profunctor IA : A −7−→ A performs the identity

morphism of A in Prof.

Furthermore, the bicategory Prof is closed. For profunctors X : A −7−→ B, Y : B −7−→ C,
and Z : A −7−→ C, the profunctor X‡Z : B −7−→ C is defined by

X‡Z(C,B) = Fun(A, Set)(X(B,−), Z(C,−)) =
∫
A∈A

Hom
(
X(B,A), Z(C,A)

)
,

and the profunctor Y‡Z : A −7−→ B is defined by

Y‡Z(B,A) = Fun(Cop, Set)(Y (−, B), Z(−, A)) =
∫
C∈C

Hom
(
Y (C,B), Z(C,A)

)
.

Then there are natural bijections

Prof(A, C)(Y ⊙X,Z) ∼= Prof(B, C)(Y,X‡Z),

Prof(A, C)(Y ⊙X,Z) ∼= Prof(A,B)(X,Y‡Z).
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Proposition 1.11. LetM be a closed bicategory. Then for a morphism X : A → B, we

have

X is a left adjoint ⇐⇒ X commutes with all right Kan liftings,

X is a right adjoint ⇐⇒ X commutes with all right Kan extensions.

Proof. We show the first statement; the second is dual. The (⇒) direction follows from

Proposition 1.7. For (⇐), sinceM is closed, the statement follows from Proposition 1.5.

We also recall the notion of morphisms between bicategories.

Definition 1.12. Let K,L be bicategories. A lax functor Φ: K → L consists of

• a map Φ: ob(K)→ ob(L),

• for each pair A,B ∈ K of objects, a functor Φ = ΦAB : K(A,B)→ L(Φ(A),Φ(B)),

• for each object A ∈ K, a 2-cell ϵA : idΦ(A) ⇒ Φ(idA), and

• for each triple A,B,C ∈ K of objects, a 2-cell µA,B,C
g,f : Φ(g)◦Φ(f)⇒ Φ(g ◦f) natural

in f ∈ K(A,B) and g ∈ K(B,C)

such that these data satisfy the associativity and unity axioms (see [JY21, Definition

4.1.2] for the precise definition). We call ϵA the lax unity constraint and µA,B,C
g,f the lax

functoriality constraint.

A lax functor Φ: K → L is called normal (or unitary) if all ϵA are invertible, and a

pseudo-functor if all ϵA and µA,B,C
g,f are invertible.

It is immediate to see that any pseudo-functor preserves equivalences and adjunctions,

but this does not hold for a lax functor in general.

1.2 Proarrow equipments

Let K,M be bicategories.

Definition 1.13 ([Woo82], [Woo85]). A pseudo-functor (−)∗ : K →M is called a proarrow

equipment if it satisfies:

(1) (−)∗ is bijective on objects,

(2) (−)∗ is locally fully faithful, and

(3) for any 1-morphism f in K, f∗ has a right adjoint f∗ inM.

Note that in recent years, an equipment often refers to a special double category ([Shu08],

[CS10]).

Since a proarrow equipment (−)∗ is bijective on objects, we henceforth identify the objects

of K andM, so ob(K) = ob(M).
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For a proarrow equipment (−)∗ : K →M, given a morphism f : A→ B in K, there exists
an adjunction f∗ ⊣ f∗ inM. We write the unit of this adjunction by f : idA ⇒ f∗ ◦f∗. Since
the unit is a left Kan extension, for any 2-morphism τ : f ⇒ g : A→ B in K, one obtains a

unique 2-morphism τ∗ : g∗ ⇒ f∗ : B → A inM such that

B

A A

f∗

f∗

g∗ τ∗

idA

f
=

B

A A.
g∗

f∗
τ∗

g∗

idA

g

This correspondence defines a pseudo-functor

(−)∗ : Kcoop →M,

which is locally fully faithful since (−)∗ is.

A morphism X in M is called representable if it can be written as X ∼= f∗ for some

morphism f in K, and corepresentable if it can be written as X ∼= f∗.

Example 1.14. The following are typical examples of proarrow equipments.

(1) Let Cat be the 2-category of small categories and Prof the bicategory of profunc-

tors. For a functor F : A → B, we define the profunctor F∗ : A −7−→ B by F∗ =

HomB(−, F (−)). It is known that F∗ has a right adjoint F ∗ = HomB(F (−),−) : B −7−→
A in Prof (see [Bor94, Proposition 7.9.1] or [Lor21, Remark 5.2.1] for example).

Hence the mapping F 7→ F∗ yields a proarrow equipment

(−)∗ : Cat→ Prof.

(2) More generally, if V is a cosmos, then V-enriched profunctors X : A −7−→ B between V-
enriched small categories are defined similarly, and there exists a proarrow equipment

of V-enriched categories

(−)∗ : V-Cat→ V-Prof, F 7→ B(−, F (−)).

Example 1.15. (Other examples)

(1) Let C be a category with pullbacks, and let Span(C) denote the bicategory of spans in

C. Then the assignment (f : c→ d) 7→ (c
idc←−− c

f−→ d) defines a proarrow equipment

(−)∗ : C → Span(C).

(2) If S is a finitely complete category, there exists a proarrow equipment

(−)∗ : Cat(S)→ Prof(S)

relating S-internal categories and S-internal profunctors.
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(3) Let TopGeom denote the 2-category of elementary toposes and geometric morphisms

(with morphisms reversed from the direction of left adjoints). Let TopLex denote

the 2-category of elementary toposes and left exact functors. Then there exists a

proarrow equipment

(−)∗ : TopGeomop → TopLexco

given by taking left adjoints of geometric morphisms.

(4) Similarly, let AbelGeom denote the 2-category of Abelian categories and geometric

morphisms, and AbelLex the 2-category of Abelian categories and left exact functors.

Then there exists a proarrow equipment

(−)∗ : AbelGeomop → AbelLexco

given by taking left adjoints of geometric morphisms.

Proposition 1.16 (Yoneda [Woo82, Proposition 3]). Let (−)∗ : K → M be a proarrow

equipment.

(1) For morphisms f : B → C in K and Z : A→ C inM, we have Riftf∗ Z
∼= f∗ ◦ Z.

(2) For morphisms f : B → A in K and Z : A→ C inM, we have Ranf∗ Z ∼= Z ◦ f∗.

Proof. It is immediate from Proposition 1.6.

Corollary 1.17. Let (−)∗ : K → M be a proarrow equipment. For morphisms f : B →
C, g : A→ C in K, we have Riftf∗ g∗

∼= f∗ ◦ g∗ ∼= Rang∗ f
∗.

1.3 The notion of (co)limits within a proarrow equipment

Let (−)∗ : K →M be a proarrow equipment.

Definition 1.18 ([Woo82, §2]). For morphisms f : J → A in K and W : M → J in M,

the W -weighted colimit of f is a morphism colimW f = W ⋆f : M → A in K together with

a right Kan lifting

M

A J

Wι

(W⋆f)∗

f∗

in M. If the W -weighted colimit of f exists, then (W ⋆ f)∗ = RiftW f∗. In other words,

W ⋆ f exists if and only if the right Kan lift RiftW f∗ exists and is corepresentable.

Dually, for morphisms f : J → A in K and V : J →M inM, the V -weighted limit of f

is a morphism limV f = {V, f} : M → A in K together with a right Kan extension

M

J A

{V,f}∗
πV

f∗
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inM. If the V -weighted limit of f exists, then {V, f}∗ = RanV f∗. In other words, {V, f}
exists if and only if the right Kan extension RanV f∗ exists and is representable.

Example 1.19. Consider the proarrow equipment V-Cat→ V-Prof of enriched categories,

as in Example 1.14. Let M = I be the unit V-category. For a V-functor F : J → A and

a V-profunctor W : I −7−→ J , the right Kan lifting RiftW F ∗ : A −7−→ I is given by

RiftW F ∗(∗, A) = Fun(J op,V)(W (−, ∗),A(F−, A)).

Hence the W -weighted colimit of F in the sense of Definition 1.18 is precisely the enriched

colimit of F weighted by the presheaf W : J op ∼= J op ⊗ I → V in the sense of [Kel82,

§3.1].

Proposition 1.20 ([Woo82, Proposition 6]). For morphisms f : J → A in K and V : N →
M , W : M → A inM, if the W -weighted colimit W⋆f exists, then we have an isomorphism

V ⋆ (W ⋆ f) ∼= (W ◦ V ) ⋆ f,

either side existing if the other does.

Dually, for suitable U,W, f , if the W -weighted limit {W, f} exists, then we have an

isomorphism

{U, {W, f}} ∼= {U ◦W, f},

either side existing if the other does.

Proof. We prove the first half. In general, RiftV (RiftW f∗) ∼= RiftW◦V f∗ so we have

(V ⋆ (W ⋆ f))∗ ∼= RiftV (W ⋆ f)∗ ∼= RiftV (RiftW f∗) ∼= RiftW◦V f∗ ∼= ((W ◦ V ) ⋆ f)∗

and since (−)∗ is locally fully faithful, we get V ⋆ (W ⋆ f) ∼= (W ◦ V ) ⋆ f .

Proposition 1.21 ([Woo82, Proposition 7]). For morphisms f : J → A, w : M → J in K,
we have

w∗ ⋆ f ∼= f ◦ w ∼= {w∗, f}.

Proof. By Proposition 1.16, we have

(f ◦ w)∗ ∼= w∗ ◦ f∗ ∼= Riftw∗ f
∗ = (w∗ ⋆ f)

∗,

which implies w∗ ⋆ f ∼= f ◦ w. The other isomorphism is proved similarly.

Definition 1.22. A morphism g : A→ B in K is said to preserve a weighted colimit W ⋆f

if g∗ commutes with the right Kan lifting (W ⋆ f)∗ = RiftW f∗.

Similarly, g : A→ B is said to preserve a weighted limit {V, f} if g∗ commutes with the

right Kan extension {V, f}∗ = RanV f∗.
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Proposition 1.23 ([Woo82, Proposition 8]). Left adjoints preserve all weighted colimits.

Dually, right adjoints preserve all weighted limits.

Proof. If a morphism f in K has a right adjoint u, then we get the adjunction f∗ ⊣ u∗ in

M, so by Proposition 1.7, f∗ commutes with all right Kan liftings. Hence f preserves all

weighted colimits in particular.

Proposition 1.24 (Formal criterion for representability [Woo82, Proposition 9]). For mor-

phisms f : A→ B in K and X : A→ B inM, the following are equivalent:

(i) X ∼= f∗.

(ii) The weighted colimit X ⋆ idB exists, X ⋆ idB ∼= f , and X commutes with all right

Kan liftings.

(iii) The weighted colimit X ⋆ idB exists, X ⋆ idB ∼= f , and X commutes with the right

Kan lifting (X ⋆ idB)
∗ = RiftX id∗B.

Proof. (i) ⇒ (ii): By Proposition 1.21, we have

X ⋆ idB ∼= f∗ ⋆ idB ∼= idB ◦f ∼= f.

Also, since X ∼= f∗ has a right adjoint, it commutes with all right Kan liftings.

(ii) ⇒ (iii): Clear.

(iii) ⇒ (i): From X ⋆ idB ∼= f , we have

f∗ ∼= (X ⋆ idB)
∗ ∼= RiftX id∗B

∼= RiftX idB .

Since X commutes with this Kan lifting, Proposition 1.5 shows that there is an adjunction

X ⊣ f∗. As f∗ ⊣ f∗, we get X ∼= f∗.

We remark that for morphisms f : A→ B, u : B → A in K, f ⊣ u holds in K if and only

if f∗ ∼= u∗ holds inM.

Corollary 1.25 (Formal adjoint arrow theorem [Woo82, Corollary 10]). For morphisms

f : A→ B, u : B → A in K, the following are equivalent:

(i) f ⊣ u holds in K.

(ii) The weighted colimit f∗ ⋆ idA exists, f∗ ⋆ idA ∼= u, and f preserves all weighted

colimits.

(iii) The weighted colimit f∗ ⋆ idA exists, f∗ ⋆ idA ∼= u, and f preserves the weighted

colimit f∗ ⋆ idA.

Proof. This follows from Proposition 1.24 by taking X = f∗ : B → A.
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Definition 1.26. A morphism f : A → B in K is called fully faithful if the unit of the

adjunction f∗ ⊣ f∗ is an isomorphism.

Example 1.27. In the proarrow equipment V-Cat→ V-Prof of enriched categories over a

cosmos V, a V-functor F : A → B is fully faithful in the above sense if and only if it is fully

faithful in the enriched sense; that is, all FAA′ : A(A,A)→ B(FA,FA′) are isomorphisms

for A,A′ ∈ A.

Proposition 1.28 (Part of [Woo82, Proposition 13]). For a left adjoint f : A → B in K
with unit η, the following are equivalent.

(i) f is fully faithful.

(ii) η is an isomorphism.

Proof. If f has a right adjoint with unit η, then η∗ is the unit of the adjunction f∗ ⊣ f∗.

Thus the assertion follows, since (−)∗ is locally fully faithful.

1.4 Absolute limits and Cauchy completeness

Most of the contents of this subsection are not included in [Woo82], but they are considered

part of the folklore.

Let (−)∗ : K →M be a proarrow equipment.

Definition 1.29. For morphisms f : J → A in K and W : M → J inM, the W -weighted

colimit W ⋆ f : M → A of f is said to be absolute if it is preserved by every morphism

g : A→ B in K. Similarly, the V -weighted limit {V, f} : M → A of f is said to be absolute

if it is preserved by every morphism g : A→ B in K.

Proposition 1.30. Let W : M → J be a morphism in M. If W has a right adjoint

V : J →M , then all W -weighted colimits are absolute. Similarly, if W : J →M has a left

adjoint U : M → J , then all W -weighted limits are absolute.

Proof. Suppose f : J → A is a morphism in K and the W -weighted colimit W ⋆ f : M →
A exists. Then (W ⋆ f)∗ = RiftW f∗. Since W is a left adjoint, Proposition 1.6 shows

RiftW f∗ ∼= V ◦ f∗. Hence for any g : A→ B in K, we have

RiftW f∗ ◦ g∗ ∼= V ◦ f∗ ◦ g∗ ∼= V ◦ (gf)∗ ∼= RiftW (gf)∗.

Thus g∗ commutes with the right Kan lifting RiftW f∗, and g preserves the colimit W ⋆ f .

The case of weighted limits is similar.

Proposition 1.31 (A generalization of [Gar14]). Let W : M → J be a morphism in M
with a right adjoint V : J → M . For morphisms f : J → A and z : M → A in K, z is the

(absolute) W -weighted colimit of f if and only if z is the (absolute) V -weighted limit of f .

Proof. Since W ⊣ V , we see from Proposition 1.6

RiftW f∗ ∼= V ◦ f∗, RanV f∗ ∼= f∗ ◦W.
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In particular, we get an adjunction RanV f∗ ⊣ RiftW f∗. Therefore, RiftW f∗ being corepre-

sentable by z is equivalent to RanV f∗ being representable by z.

Definition 1.32. An object A ∈ K is said to be Cauchy complete if every left adjoint

morphism Φ: D → A inM is representable.

Proposition 1.33. For an object A ∈ K, the following are equivalent:

(i) A is Cauchy complete.

(ii) A has all colimits weighted by left adjoints.

(iii) A has all limits weighted by right adjoints.

Proof. (i) ⇒ (ii): Let W : D → J be a left adjoint inM with right adjoint V : J → D. For

any morphism f : J → A in K, by Proposition 1.31, the existence of colimW f is equivalent

to the existence of limV f , which holds if and only if RanV f∗ ∼= f∗ ◦W is representable.

Since f∗ ◦W is a left adjoint inM, it is representable by the Cauchy completeness of A.

(ii) ⇒ (i): Let W : D → A be a left adjoint in M with right adjoint V : A → D. Since

A has W -weighted colimits, in particular g := colimW idA exists. Then g∗ is the right Kan

lifting RiftW id∗A. Now W ⊣ V implies V ∼= g∗, and hence g∗ ∼= W .

(ii) ⇔ (iii): This follows from Proposition 1.31.

Therefore, by Proposition 1.30, an object is Cauchy complete if it has all absolute

weighted colimits.

Remark 1.34. For the proarrow equipment (−)∗ : V-Cat→ V-Prof of enriched categories

and enriched profunctors, the converse of Proposition 1.30 holds ([Str83]). That is, weights

of absolute colimits have right adjoints; and hence an enriched category is Cauchy complete

if and only if it has all absolute weighted colimits. It is not clear to the author whether

this is the case for general proarrow equipments.

1.5 Relative adjunctions and pointwise Kan extensions

Let (−)∗ : K → M be a proarrow equipment. Recall that the assignment that sends a

morphism f in K to the right adjoint f∗ of f∗ induces a pseudo-functor

(−)∗ : Kcoop →M

that is bijective on objects and locally fully faithful.

Definition 1.35. A 2-cell
B

A C

t
s

j

η

in K is said to be a relative unit relative to j if the 2-cell obtained by applying the pseudo-

functor (−)∗ to it,

B

A C,

s∗

η∗
t∗

j∗
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is a right Kan extension inM. In this case, s is called a relative left adjoint of t.

Similarly, a 2-cell

B

A C

t
ε

s

j

in K is said to be a relative counit relative to j if the 2-cell obtained by applying the

pseudo-functor (−)∗ to it,

B

A C,

t∗
ε∗

s∗

j∗

is a right Kan lifting inM. In this case, s is called a relative right adjoint of t.

Proposition 1.36 ([Woo82, Proposition 11]). Relative adjunctions are absolute Kan lift-

ings.

Proof. Consider a 2-cell in K
B

A C

t
s

j

η

that is a relative unit. We want to show that η is an absolute left Kan lifting in K. Take an

arbitrary 2-cell

X B

A C

b

a t

j

χ

in K. Since the pseudo-functor (−)∗ : Kcoop → M is locally fully faithful, this 2-cell corre-

sponds bijectively to the 2-cell

X B

A C

b∗

χ∗a∗ t∗

j∗

inM. Since the counit a : a∗ ◦ a∗ ⇒ idA of the adjunction a∗ ⊣ a∗ is an absolute right Kan

lifting Rifta∗ idA, this corresponds bijectively to the 2-cell

X B

A C.

a∗

b∗

t∗

j∗

By assumption η∗ is a right Kan extension, and so this corresponds bijectively to the 2-cell

X B.

A

a∗

b∗

s∗

12



Once again, since the counit a : a∗◦a∗ ⇒ idA is an absolute right Kan lifting, this corresponds

bijectively to the 2-cell

X B.

A

b∗

s∗
a∗

By the locally fully faithfulness of the pseudo-functor (−)∗ : Kcoop → M, this 2-cell in M
corresponds bijectively to the 2-cell

X B

A

b

a
s

in K. The inverse of these correspondences is obtained by pasting with η, and therefore η is

an absolute left Kan lifting.

Similarly, we see that a relative counit is an absolute right Kan lifting.

Example 1.37. Recall that a morphism j : A→ B in K is said to be fully faithful if the

unit j : idA ⇒ j∗ ◦ j∗ of the adjunction inM is an isomorphism (see Definition 1.26). By

Corollary 1.17, we have an isomorphism j∗ ◦ j∗ ∼= Ranj∗ j
∗. Therefore, j is fully faithful if

and only if the 2-cell

A

A B

idA

1
j∗

j∗

is a right Kan extension in M. In other words, this is equivalent to saying that the

following 2-cell in K
A

A B

j
idA

j

1

is a relative unit.

Remark 1.38. Consider the proarrow equipment (−)∗ : V-Cat→ V-Prof of enriched cat-

egories. Then the identity 2-cell 1 : j → j ◦ id becomes a relative unit if and only if j is

fully faithful as an enriched functor. On the other hand, the fact that 1: j → j ◦ id is an

absolute left Kan lifting is equivalent to the underlying functor j0 being fully faithful as

an ordinary functor. This shows that the converse of Proposition 1.36 does not hold in

general.

However, the following holds.

Proposition 1.39 ([Woo82, Proposition 12]). Consider a 2-cell in K

B

A C

t
s

j

η

13



that is an absolute left Kan lifting. If either (1) j is a left adjoint or (2) t is a right adjoint,

then η is a relative unit.

Proof. (1) Suppose that j is a left with right adjoint r. Then the unit idA ⇒ r ◦ j is an

absolute left Kan lifting, and hence so is the composite 2-cell

B

C

A A.

t

r

ηs

j

idA

In particular, this 2-cell serves as the unit for an adjunction s ⊣ rt. Since this implies

s∗ ⊣ (rt)∗, the corresponding 2-cell inM

B

C

A A

s∗ η∗
t∗

j∗ r∗

idA

is an absolute right Kan extension. The lower triangle is the counit of the adjunction j∗ ⊣ r∗

and thus is also an absolute right Kan extension. It follows that η∗ is a right Kan extension

inM, and therefore η is a relative unit.

(2) Suppose that t is a right adjoint with left adjoint f . Then the unit idC ⇒ t ◦ f is an

absolute left Kan lifting, so the 2-cell

B

A C C

t

j

f

idC

is also a left Kan lifting. Hence this 2-cell is isomorphic to η. It follows that we have the

isomorphism

B

A C

s∗

η∗
t∗

j∗

∼=
B

A C C

f∗

j∗ idC

t∗

The right triangle on the right-hand side is the counit of the adjunction f∗ ⊣ t∗, so it is an

absolute right Kan extension. Therefore, η∗ is a right Kan extension inM, and therefore η

is a relative unit.

Proposition 1.40 (Part of [Woo82, Proposition 13]). Let j : A→ B be a morphism in K
which has a left or right adjoint. Then the following are equivalent:

(i) j is fully faithful, in the sense that the unit j : idA ⇒ j∗ ◦ j∗ of the adjunction j∗ ⊣ j∗

is an isomorphism.

14



(ii) j is representably full faithful ; that is, for all X ∈ K, the post-composition functor

j ◦ − : K(X,A)→ K(X,B) is fully faithful.

Proof. As seen in Example 1.37, the condition (i) is equivalent to saying that the identity

2-cell
A

A B

j
idA

j

1

is a relative unit. On the other hand, the condition (ii) states that this 2-cell is an absolute left

Kan lifting. Therefore, the assertion follows from Proposition 1.36 and Proposition 1.39.

Definition 1.41. A 2-cell in K
B

A C

k
j

f

κ

is said to be a pointwise left Kan extension of f along j if the 2-cell obtained by applying

the pseudo-functor (−)∗ to it,

B

A C,

j∗
κ∗

f∗

k∗

is a right Kan lifting inM.

Similarly, a 2-cell in K
B

A C

k

κ
j

f

is said to be a pointwise right Kan extension of f along j if 2-cell obtained by applying the

pseudo-functor (−)∗ to it,

B

A C,

k∗

κ∗
j∗

f∗

is a right Kan extension inM.

Remark 1.42. In other words, a 2-cell κ : f ⇒ k ◦ j is a pointwise left Kan extension if

and only if k is the j∗-weighted colimit of f , that is, k ∼= j∗ ⋆ f .

Similarly, 2-cell κ : k ◦ j ⇒ f is a pointwise right Kan extension if and only if k is

j∗-weighted limit of f , that is, k ∼= {j∗, f}.

Proposition 1.43. Pointwise Kan extensions are Kan extensions.

Proof. It follows immediately from the fact that the pseudo-functors (−)∗, (−)∗ are locally

fully faithful.
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Proposition 1.44 ([Woo82, Proposition 14]). Let κ : f ⇒ k ◦ j be a pointwise Kan exten-

sion in K. If j is fully faithful, then κ is an isomorphism.

Proof. Suppose that κ is a pointwise left Kan extension so that

B

C A

j∗
κ∗

k∗

f∗

is a right Kan lifting. Since the counit j : idB ⇒ j∗ ◦ j∗ of j∗ ⊣ j∗ is an absolute right Kan

lifting, so is the 2-cell

A

C B B.

j∗j

k∗

j∗

idB

It follows that the composite 2-cell

A

B B

C A

j∗j

j∗

idB
j∗κ∗

k∗

f∗

is a right Kan lifting. Now j is fully faithful so that the unit j : idA ⇒ j∗ ◦ j∗ is an

isomorphism. Hence the 2-cell above can be seen as a right Kan lifting of f∗ along idA and

we have the isomorphism

A

B B

C A

j∗

idA∼=

j

j∗

idB
j∗κ∗

k∗

f∗

∼=

A

C A.

idA
1

f∗

f∗

By the triangle identity equations, the left-hand side becomes

A

B

C A.

idA
κ∗

j∗

k∗

f∗

Since this is isomorphic to the identity 2-cell 1 : idA ◦f∗ ⇒ f∗, κ∗ is an isomorphism. There-

fore κ is also an isomorphism.
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